
The Ultimate Oldschool PC Font Pack v2.2: Documentation

ABOUT
─────

The Ultimate Oldschool PC Font Pack started out with the idea of paying tribute to ancient PCs and their
bitmapped, pre-GUI typography (if you can call it that). It was inspired by similar efforts that cover
other vintage machines: classic system fonts from the Amiga, C64, Apple II, Mac, ZX Spectrum, Atari 8-
bit/ST etc. are all celebrated. On the other hand, the IBM PC and its clones seem to get little love...
except for that one VGA text mode font (which has been remade numerous times, to varying degrees of
success).

This collection is here to remedy that, and to bring you pixel-perfect remakes of various type styles
from text-mode era PCs - in modern, multi-platform, Unicode-compatible TrueType form (plus straight
bitmap versions).

Although the goal is to make it a complete resource, the main focus is on hardware/firmware character
sets: the kind that's located in a ROM chip on the system board or graphics card, which is what you'd
see by default when working in text (or graphics) mode. Software-loadable fonts are also within the
scope of this collection (if associated with a particular machine or display system), so some of these
have also made it in.

FREQUENTLY ASKED QUESTIONS
──────────────────────────

Q. What's with all those weird prefixed versions of each font? Which one(s) do I want/need?

A. The font name starts with two letters which signify the rendering:

• When crisp appearance is important, you'll want bitmap rendering. This is available with the
'Mx' ('mixed-format') and 'Bm' (bitmap) variants.

• When perceptual fidelity is important, you'll want the true aspect ratio of the original fonts.
This is available with the 'Ac' variants ('aspect-correct', or maybe 'accurate', take your pick).

• Wherever the above formats don't work (well), you can use the 'Px' ('pixel-font') variants, which
are TrueType fonts with a square-pixel aspect, and should be the most compatible.

The rest of the prefix specifies the character set:

• '437' includes all 256 characters available in the IBM PC's original encoding (codepage 437).

• 'Plus' has a greater selection (some 780 characters in total) to support more scripts and
symbols; a lot of them are custom additions, so this was only done for a few selected fonts.

Q. Okay, and the suffixes - "-2x", "-2y"? What are these all about?

A. These indicate how the font is scaled. In many cases, the original video hardware would double or
halve the width of the text by modifying the pixel clock that drives the display. For example, take
80-column vs. 40-column text modes: the number of characters per row varies, but each row takes up
the same width on the screen. In other words, what changes is the horizontal pixel aspect ratio.

To reproduce this effect, some of these fonts come in additional double-width and/or half-width
versions. Generally, the "parent" font (without a suffix) is the one with the pixel aspect closest
to square, "-2x" is for double-width (2:1) versions, and "-2y" signifies half-width (1:2). For the
lowdown on how those different versions were used originally, see the detailed info page for each
font.

Q. If a font already has an expanded 'Plus' charset, isn't the '437' version redundant? Why include it
at all?

A. 'Plus' does include every character from '437' and then some, but there are two reasons why the '437'
versions are still useful:

• The 'Plus' versions remap a few CP437 characters (Greek/Math symbols) to other code points to
resolve ambiguities. The '437' versions always preserve the original encoding 100%.

• With 8-bit encodings, some programs/text engines need these versions to ensure proper rendering.
This is especially true in Windows, which fails to provide a "DOS/OEM" script option for fonts
that include more than that. So if you're working with 8-bit ASCII text which requires this DOS
charset, '437' is your best bet.

Q. The TrueType fonts don't look good on my end (badly aliased, too bold, distorted, etc.) - what's the
deal?

A. These fonts duplicate the original bitmap characters, with their right-angled pixel outlines, which
don't scale smoothly. That means they'll only look good at the original pixel height (or at an
integer multiple of it); this size is noted for each font in the font list. E.g. for an 8x16-pixel
font, the TrueType version should be displayed at a height of 16 (/32/48/64/...) pixels.

Most current software determines text sizes in points (pt), not pixels. The conversion depends on
resolution, so the size you'll want to select may vary with your OS, monitor, and DPI settings: more
info below.

Q. Will you add [insert font name]?

A. If it's within the scope of this collection, then sure! In other words, if:

• It's a bitmapped text-mode font (no GUI stuff),
• It originates with some kind of IBM PC-compatible video hardware, and
• It's different from the fonts already included.

It's not hard science, so there are naturally some borderline cases, but without these guidelines
the scope would become certifiably insane (it's pretty deep into the rabbit-hole as it is). If you
can contribute anything that does meet these criteria, it would be more than welcome - please let me
know.

Q. Will you add bold / italics / programming ligatures / etc.?

A. No, there are no plans to do that. Such modern GUI concepts don't square very well with fonts that
were originally designed with pure text mode in mind, so they wouldn't really work visually. Most
current text renderers can already simulate bold/italic styles by fattening or slanting the glyphs,
but these are mostly basic "smear 'n' shear" algorithms that work about as well as you'd imagine.

Exception: certain fonts (very few of them) come from systems that natively supported different text
'weights' simultaneously – usually as an alternative to brightness. This is implemented as Regular
and Bold styles of the same font family, and these cases are noted in the font index.

Q. How about raw binary versions of these fonts? For use in real VGA text mode, homebrew hardware
projects, etc.?

A. Check out my DOS-based VGA font editor Fontraption[→] - the download includes most of these oldschool
PC fonts in raw binary format. The few exceptions are those that are too large for VGA text mode
(i.e. more than 8/9 dots wide).

Q. Is every single font here 100% faithful to the original raster typeface?

A. No, not *every* single one. For a start, the 'Plus' versions with the expanded character sets often
include many custom glyphs that weren't there originally. Even with the '437' variants, there are
cases where some changes were called for: a few of them are *remapped*, since they're based on e.g.
Japanese fonts, and the originals only had the lower (ASCII) half of the codepage present. These
remaps are clearly noted in the font index (and by "re." in the font name). Others had obvious
errors, like a curiously wandering baseline, or misaligned box-drawing characters – these cases are
listed under "Diffs & Errata".

I'm all for accuracy, but this isn't purely a preservation project; these fonts are meant to be
used, not to just function as museum reproductions. When one of the original charsets has an issue
that hampers usability, I tend to fix it and note it as such.

Q. Is this even legal? The original fonts are not yours. Do you have the right to distribute these
versions?

A. Short answer: as far as I was able to research, there is nothing illegal or infringing about this
collection. The raw bitmap typefaces are not copyrightable, unlike fonts in specific formats such
as .fon and TrueType (which qualify as software); at least this is the case in the US, where this
site is based. For a longer and far more boring answer, see the legal stuff section below.

https://int10h.org/blog/2019/05/fontraption-vga-text-mode-font-editor/

FONT FORMATS / VARIANTS
───────────────────────

Fonts in this pack come in a few formats, identified by the prefix on the font's name ("Ac437",
"PxPlus", etc.). Here's the gist on what they're all for:

'Px' (pixel outline) TrueType fonts

This is the same TrueType variant used in v1.x of this pack. The outlines in these fonts follow the
pixel grid of the original raster characters: each pixel in the original is represented as a square
region in the outlined glyph, so the character forms can be replicated nicely on a square-pixel
display (i.e. practically every monitor and display device made today).

The 'Px' prefix is followed by the character set, either '437' or 'Plus'. 'Px437' fonts cover the
selection of 256 characters established by the original IBM PC, also known as Code Page 437.
'PxPlus' fonts cover a wider selection of characters to support more scripts and symbols; both of
these varieties are 100% compatible with Unicode environments. See Charsets & Encodings below for
details.

'Mx' (mixed format) TrueType fonts: outlines + bitmaps

These are basically the same as the 'Px' fonts, but besides the outline forms, they also contain
bitmap versions of the characters. At the correct size (i.e. the same as the original oldschool
charset), this provides a 1:1 pixel-based reproduction of the original, without any grayscale or
subpixel "smoothing" artifacts that tend to show up in ClearType/FreeType/etc.

Although not widely used, this is actually a standard feature of sfnt containers (the basis of the
.ttf format): an outline font can have embedded bitmap 'strikes' tuned for particular sizes, and the
renderer is supposed to use them whenever available. The whole mess of rasterizing an outline is
bypassed, and you get a perfectly sharp rendering.

This sounds like the ideal setup for reproducing oldschool bitmap text, so you may ask yourself if
it doesn't make the 'Px' variants redundant. If the same format can handle both outlines and
bitmaps - and bitmaps are vastly preferable for *our* purpose - then what's the use for the outline-
only 'Px' format? Why not just use the 'Mx' fonts everywhere and spare us the disk space and the
confusion?

The prosaic answer is that specifications are one thing, and real-world support is another: the
bitmap part of the deal just isn't correctly implemented everywhere. Namely, making these fonts
compatible with Windows required an ugly hack[→], because Windows ignores the spec *unless* the
fonts meet certain undocumented(!) criteria. The upshot is that Windows behaves weirdly with the
'Mx' fonts: they may show up with "@" prefixes in font lists, and more annoyingly, you cannot select
the "DOS/OEM" script. This means that they won't display correctly for text that uses a real 8-bit
OEM encoding - e.g. CP437 text files from DOS that use non-ASCII characters (.NFO artwork and such).
For this, the 'Bm' fonts (8-bit .FON) are more compatible. I haven't tested extensively on Linux,
but over there things seem to depend on the rendering engine, the desktop environment, and the
individual programs themselves.

In practice, the 'Mx' fonts seem to work just fine in Windows and Linux when the encoding is
Unicode, and the full range of CP437 (DOS/OEM) characters is available with the 'Mx437' fonts. As
with the other formats, some fonts also have 'MxPlus' variants that support a wider range of scripts
and symbols.

'Ac' (aspect-correct) TrueType fonts

'Px' and 'Mx' font variants are tuned for square pixels, which is what current displays are based
on, and is the default assumption of practically all common GUI environments. This makes it easy to

Raw bitmapped text (original) TrueType outline following the
pixel glyph shapes

In SOME cases, 'Px' fonts may show
fringing if the text is anti-aliased

'Mx' fonts will still render as
sharp bitmaps (at the right size)

https://int10h.org/blog/2016/01/windows-cleartype-truetype-fonts-embedded-bitmaps/

ensure 1:1 reproductions of the oldschool glyph *shapes*, but in most cases, the aspect ratio isn't
the same as the original.

That's because the original fonts were shown on CRT or LCD monitors that *didn't* necessarily have
square pixels. CRTs were generally 4:3, but the pixel aspect ratio depended on the resolution,
which varied with hardware and with the chosen display mode. LCD or plasma panels (for portable
machines) came in a dizzying array of shapes and sizes.

So alongside the simple square-pixel versions, these fonts have 'Ac' (aspect-corrected) variants to
reproduce the original appearance; both the "square" and "corrected" pixel ratios are listed for
each font in the index. Some fonts *did* use square pixel ratios originally, and other cases were
close enough that the difference is negligible. For these fonts the square-pixel versions should be
good enough, so no 'Ac' variants are provided.

When the aspect-corrected versions are shown on a current display, the outline of the characters is
still rasterized onto a square-pixel grid, so the trade-off is sharpness/quality. On high-DPI
monitors, or at the right text sizes (with good subpixel anti-aliasing), the result can still look
pretty good – you can try it out on this site if you select a font from the index and play around
with the preview options. See Aspect Ratio below for more details about these fonts.

Just like with 'Px' and 'Mx', these fonts come as either 'Ac437' (covering all CP437 DOS/OEM
characters) or 'AcPlus' (the extended multi-lingual charsets).

'Bm' (bitmap) fonts, .fon and .otf formats

'Bm' fonts contain plain bitmap characters, so they aren't subject to rasterization issues with
grayscale or subpixel anti-aliasing; they should always render as 1:1 pixels, as sharp and crisp as
they can be. Unfortunately there's no widely used bitmap format which is universally supported
everywhere; for now these fonts are available in the following formats:

• FON (for Windows): this format only supports 8-bit encodings, so it cannot be used for the wider
'Plus' character sets. Only the 'Bm437' variants, which follow the US-Latin extended ASCII
encoding from DOS, are available in this format.

The character set of the .FON format (in this case 'DOS/OEM') always seems to be interpreted
correctly, with no ifs or buts, whether you're working with Unicode or CP437 text. Some programs
may turn up their noses at 'DOS/OEM' TrueType fonts, so these versions can effectively force them
to play nice with CP437 data.

• OTB (for Linux): OpenType Bitmap fonts, as currently supported by X11, are more or less (but not
exactly) the 'Mx' sfnt fonts minus the TrueType outlines, i.e. only the bitmap characters.
Unlike .fon, they aren't limited to 8-bit charsets, so both 'Bm437' and 'BmPlus' variants are
provided.

Linux has used other bitmap formats (PCF/BDF) for decades, and those are equally capable, but
support for them was recently broken in many places, due to a minor(!) version upgrade of the
Pango library unceremoniously dropping FreeType. OTB should have wider support now, but I
haven't been able to test these fonts very thoroughly; as of v2.1, they're more of an
experimental last-minute addition.

'Web' (webfonts, .woff format)

Basically these are versions of the 'Px' TrueType fonts, optimized and compressed for web usage.
All major current browsers already support plain .ttf fonts natively, so having yet another version
may seem like a waste of space, but there are a few things to consider:

• The compression does make the .woff fonts much smaller, i.e. better for remote delivery.

• Sizing is much more straightforward and intuitive in the .woff versions. Thankfully, web usage
remains free from the typical OS's insistence on irrelevant units like 'pt' (points), on limiting
the sizes you can select, and other such silliness.

CSS lets you specify any desired font size and line height independently, in either em or px
units; so the .woff versions make the em size always equal to the line height, which can always
match the font's original pixel height. If the original font had an 8x14 character size, the web
version should simply be used with a font-size *and* a line-height of 14px (which then becomes
equal to 1em) – simplicity itself.

The IBM MDA font shown
in square-pixel aspect

...vs. the pixel aspect of
an actual IBM MDA display

So, why make web versions for the 'Px' variants but not for the others? The reasoning is:

• If you want aspect correction (as in the 'Ac' variants), you don't really need a separate font
with the correction baked into it – you can always do it yourself with CSS transforms. That's
what this site does in the font preview pages.

• If you want bitmap glyphs (as in the 'Mx' or 'Bm' variants)... alas, no can do. The format
technically *does* support the 'Mx'-style method of bitmap embedding, but current browsers seem
to run all incoming webfonts through something called the OpenType Sanitizer[→], which validates
the fonts and gets rid of Bad Things. As of this writing, embedded bitmaps are thrown out with
the trash, although there is an open issue[→] for a possible fix. If this gets resolved (either
on the browser end or on the Sanitizer end), then bitmapped versions may yet happen.

Summary / tl;dr version

To put the above wall of text a little more succinctly, it works sort of like this:

Variant Bitmap? Outline? Charset Pixel aspect Format Notes
Px437 ■ DOS/CP437 Square ttf TrueType w/1:1 pixel outlines
PxPlus ■ Extended Square ttf TrueType w/1:1 pixel outlines
Mx437 ■ ■ DOS/CP437 Square ttf TrueType w/embedded bitmaps
MxPlus ■ ■ Extended Square ttf TrueType w/embedded bitmaps
Ac437 ■ DOS/CP437 Original ttf TrueType, aspect-corrected
AcPlus ■ Extended Original ttf TrueType, aspect-corrected
Bm437 ■ DOS/CP437 Square fon/otb Bitmap-only formats, Win/Linux
BmPlus ■ Extended Square otb Bitmap-only format, Linux
Web437 ■ DOS/CP437 Square woff Aspect is flexible using CSS
WebPlus ■ Extended Square woff Aspect is flexible using CSS

Confusing? Probably. I *wish* there was a way to roll all of these into a single convenient font
format that just worked everywhere, but we're not that lucky, so I've tried to cover as many bases
as possible.

ENCODINGS AND CHARACTER SETS
────────────────────────────

Fonts in this collection come in two character sets, as noted in the font name prefix.

• '437' (available for all fonts): This features the classic set of 256 characters established by
the original PC, also known as Code Page 437[→] (or "PC ASCII", "Latin-US DOS/OEM", and other
catchy names). The character mapping to Unicode aims for maximum compatibility with the original
codepage, so in addition to normal usage, these fonts should also let you view CP437 text in its
original encoding.

• 'Plus' (for specific fonts only): On top of the CP437 range, these support extended Latin, Greek,
Cyrillic and Hebrew scripts plus a bunch of additional glyphs and Unicode symbols. The extra
characters were taken from international versions of the original hardware (if available), or
designed to closely follow the existing ones.

There are 782 characters in total (more than the Windows Glyph List v4[→] -- in fact the entire
WGL4 range is there). A handful of the CP437 glyphs had to be remapped (read below for why), but
they're all still around.

The '437' Character Set

In most cases, code page 437 was the original character set of the source fonts. This pack's
converted versions are still standard Unicode fonts - they just don't include a whole lot of the
Unicode range.

CP437 can't really be mapped to Unicode in a simple 1:1 manner. The culprits are characters 00h-1Fh
and 7Fh, which can be interpreted either as control codes or as graphical symbols. Thus there are
two widely used mappings: the standard IBM/MS map[→] (which does the former), and Unicode's
"IBMGRAPH" map[→] (which does the latter). Trouble is, software that expects one of them may not
always play nice with the other one.

As a solution, these fonts cover both bases in one mapping: the ambiguous characters are duplicated
so that your program will find them at either placement. Windows detects the fonts as "OEM/DOS",
and you can use them in any program or environment that understands this charset (including the
Command Prompt). The same will be true on other platforms, as long as your software is properly
configured -- RTFM, YMMV, etc.

https://github.com/khaledhosny/ots
https://github.com/khaledhosny/ots/issues/200
http://www.ascii-codes.com/
https://orwell.ru/info/wgl4.htm
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP437.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MISC/IBMGRAPH.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MISC/IBMGRAPH.TXT

 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
00 0000

25BA* ► 0020

0030 0 0040 @ 0020 P 0060 ` 0070 p 00C7 Ç 00C9 É 00E1 á 2591 ░ 2514 └ 2568 ╨ 03B1 ɑ 2261 ≡
01 263A* ☺ 25C4* ◄ 0021 ! 0031 1 0041 A 0021 Q 0061 a 0071 q 00FC ü 00E6 æ 00ED í 2592 ▒ 2534 ┴ 2564 ╤ 00DF ϐ 00B1 ±
02 263B* ☻ 2195* ↕ 0022 " 0032 2 0042 B 0022 R 0062 b 0072 r 00E9 é 00C6 Æ 00F3 ó 2593 ▓ 252C ┬ 2565 ╥ 0393 ᴦ 2265 ≥
03 2665* ♥ 203C* ‼ 0023 # 0033 3 0043 C 0023 S 0063 c 0073 s 00E2 â 00F4 ô 00FA ú 2502 │ 251C ├ 2559 ╙ 03C0 ᴨ 2264 ≤
04 2666* ♦ 00B6* ¶ 0024 $ 0034 4 0044 D 0024 T 0064 d 0074 t 00E4 ä 00F6 ö 00F1 ñ 2524 ┤ 2500 ─ 2558 ╘ 03A3 ∑ 2320 ⌠
05 2663* ♣ 00A7* § 0025 % 0035 5 0045 E 0025 U 0065 e 0075 u 00E0 à 00F2 ò 00D1 Ñ 2561 ╡ 253C ┼ 2552 ╒ 03C3 ơ 2321 ⌡
06 2660* ♠ 25AC* ▬ 0026 & 0036 6 0046 F 0026 V 0066 f 0076 v 00E5 å 00FB û 00AA ª 2562 ╢ 255E ╞ 2553 ╓ 00B5 µ 00F7 ÷
07 2022* • 21A8* ↨ 0027 ' 0037 7 0047 G 0027 W 0067 g 0077 w 00E7 ç 00F9 ù 00BA º 2556 ╖ 255F ╟ 256B ╫ 03C4 ᴛ 2248 ≈
08 25D8* ◘ 2191* ↑ 0028 (0038 8 0048 H 0028 X 0068 h 0078 x 00EA ê 00FF ÿ 00BF ¿ 2555 ╕ 255A ╚ 256A ╪ 03A6 ɸ 00B0 °
09 25CB* ○ 2193* ↓ 0029) 0039 9 0049 I 0029 Y 0069 i 0079 y 00EB ë 00D6 Ö 2310 ⌐ 2563 ╣ 2554 ╔ 2518 ┘ 0398 ϴ 2219 ∙
0A 25D9* ◙ 2192* → 002A * 003A : 004A J 002A Z 006A j 007A z 00E8 è 00DC Ü 00AC ¬ 2551 ║ 2569 ╩ 250C ┌ 03A9 Ω 00B7 ·
0B 2642* ♂ 2190* ← 002B + 003B ; 004B K 002B [006B k 007B { 00EF ï 00A2 ¢ 00BD ½ 2557 ╗ 2566 ╦ 2588 █ 03B4 ẟ 221A √
0C 2640* ♀ 221F* ∟ 002C , 003C < 004C L 002C \ 006C l 007C | 00EE î 00A3 £ 00BC ¼ 255D ╝ 2560 ╠ 2584 ▄ 221E ∞ 207F ⁿ
0D 266A* ♪ 2194* ↔ 002D - 003D = 004D M 002D] 006D m 007D } 00EC ì 00A5 ¥ 00A1 ¡ 255C ╜ 2550 ═ 258C ▌ 03C6 ∅ 00B2 ²
0E 266B* ♫ 25B2* ▲ 002E . 003E > 004E N 002E ^ 006E n 007E ~ 00C4 Ä 20A7 ₧ 00AB « 255B ╛ 256C ╬ 2590 ▐ 03B5 ∈ 25A0 ■
0F 263C* ☼ 25BC* ▼ 002F / 003F ? 004F O 002F _ 006F o 2302* ⌂ 00C5 Å 0192 ƒ 00BB » 2510 ┐ 2567 ╧ 2580 ▀ 2229 ∩ 00A0

Codepage 437 (value = column + row) mapped to Unicode; all values are hexadecimal.
* = these characters are also duplicated at the Control Code points (Unicode value = CP437 value).

The 'Plus' Character Set

A few selected fonts also come in multi-lingual versions with an expanded character set. These
'Plus' versions don't strictly duplicate the original hardware/software, which almost always used
sets of 256 characters. Rather, they combine characters from various sources.

In some cases, I've had access to multiple code pages of the original fonts - e.g. from non-US
versions of CGA/MDA boards, from multi-lingual ROMs (like the Amstrad or Tandy 1000 sets), or from
IBM's Adapter Interface font data; these were all pulled into the 'Plus' versions. Mostly however,
they had to be fleshed out with custom additions, and for those extra glyphs I've tried to match the
original font's style as closely as I could.

The full 'Plus' charset (along with the supported Unicode ranges):

Control+Basic Latin 0000-007F ☺☻♥♦♣♠•◘○◙♂♀♪♫☼►◄↕‼¶§▬↨↑↓→←∟↔▲▼ !"#$%&'()*+,-./0123456789:;<=>?
 @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~⌂

 Latin-1 Supplement 00A0-00FF ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞß
 àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ

 Latin Extended-A 0100-017F ĀāĂăĄąĆćĈĉĊċČčĎďĐđĒēĔĕĖėĘęĚěĜĝĞğĠġĢģĤĥĦħĨĩĪīĬĭĮįİıĲĳĴĵĶķĸĹĺĻļĽľĿ
 ŀŁłŃńŅņŇňŉŊŋŌōŎŏŐőŒœŔŕŖŗŘřŚśŜŝŞşŠšŢţŤťŦŧŨũŪūŬŭŮůŰűŲųŴŵŶŷŸŹźŻżŽžſ

 Latin Extended-B 0180-024F ƒơƷǺǻǼǽǾǿȘșȚț
 IPA Extensions 0250-02AF ɑɸ

Spacing Modifiers 02B0-02FF ˆˇˉ˘˙˚˛˜˝
Greek 0370-03FF ;΄΅Ά·ΈΉΊΌΎΏΐΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩΪΫάέήίΰαβγδεζηθικλμνξοπρςστυ

 φχψωϊϋόύώϐϴ
 Cyrillic 0400-04FF ЀЁЂЃЄЅІЇЈЉЊЋЌЍЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмноп

 рстуфхцчшщъыьэюяѐёђѓєѕіїјљњћќѝўџҐґ
 Hebrew 0590-05FF ־אבגדהוזחטיךכלםמןנסעףפץצקרשתװױײ׳״

Phonetic Extensions 1D00-1D7F ᴛᴦᴨ
Latin Extended Add. 1E00-1EFF ẀẁẂẃẄẅẟỲỳ
General Punctuation 2000-206F ‐‒–—―‗‘’‚‛“”„‟†‡•…‧‰′″‵‹›‼‾‿⁀⁄⁔

 Super/Subscripts 2070-209F ⁴⁵⁶⁷⁸⁹⁺⁻ⁿ₁₂₃₄₅₆₇₈₉₊₋
 Currency Symbols 20A0-20CF ₣₤₧₪€

 Letterlike Symbols 2100-214F ℅ℓ№™Ω℮
 Number Forms 2150-218F ⅐⅑⅓⅔⅕⅖⅗⅘⅙⅚⅛⅜⅝⅞

 Arrows 2190-21FF ←↑→↓↔↕↨
 Math Operators 2200-22FF ∂∅∆∈∏∑−∕∙√∞∟∩∫≈≠≡≤≥⊙
Misc. Technical 2300-23FF ⌀⌂⌐⌠⌡

Box Drawing 2500-257F ─│┌┐└┘├┤┬┴┼═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬
 Block Elements 2580-259F ▀▁▄█▌▐░▒▓

 Geometric Shapes 25A0-25FF ■□▪▫▬▲►▼◄◊○●◘◙◦
Misc. Symbols 2600-26FF ☺☻☼♀♂♠♣♥♦♪♫

 Dingbats 2700-27BF ✓
Alpha. Presentation FB00-FB4F fifl

 Specials FFF0-FFFF �

A few things that may (arguably...) be useful to know:

• Alternate number forms: there's a flat-top '3' Ʒ mapped to U+01B7 'Latin capital letter Ezh',
which is more easily distinguished from the Cyrillic letter Ze З. Also, two alternative zeroes
(dotted and slashed) are mapped to U+2299 ⊙ 'circled dot operator' and U+2300 ⌀ 'diameter
symbol'.

• Cursor shapes: Unicode character U+2581 ▁ 'lower one eighth block' can be used to mimic the
classic text-mode cursor appearance. U+2584 � 'lower half block' and U+2588 █ 'full block' could
also stand in for those respective cursor forms.

• Remapped codepage 437 glyphs: The 'PxPlus' fonts still include all the original glyphs from the
CP437 (DOS/OEM) versions. However, they also include a full Greek alphabet, which takes over the
code points that Unicode assigns to the CP437 Greek/Math characters, and the new glyphs don't
necessarily look the same.
Instead of just dropping the CP437 originals, I tried to retain them at remapped code points for
the sake of completeness. Here are the changes:

CP437 glyph Canonical Unicode value Modified 'PxPlus' mapping
ɑ (E0h) α (03B1/Greek small Alpha) ɑ (0251/Latin small Alpha)
ϐ (E1h)* ß (00DF/Latin small Sharp S) ϐ (03D0/Greek Beta symbol)
ᴦ (E2h) Γ (0393/Greek capital Gamma) ᴦ (1D26/Small capital Gamma)
ᴨ (E3h) π (03C0/Greek small Pi) ᴨ (1D28/Small capital Pi)
∑ (E4h) Σ (03A3/Greek capital Sigma) ∑ (2211/N-ary Summation)
ơ (E5h) σ (03C3/Greek small Sigma) ơ (01A1/Small o with horn)
ᴛ (E7h) τ (03C4/Greek small Tau) ᴛ (1D1B/Small capital T)
ɸ (E8h) Φ (03A6/Greek capital Phi) ɸ (0278/Latin small Phi)
ϴ (E9h) Θ (0398/Greek capital Theta) ϴ (03F4/Capital Theta symbol)
Ω (EAh) Ω (03A9/Greek capital Omega) Ω (2126/Ohm symbol)
ẟ (EBh) δ (03B4/Greek small Delta) ẟ (1E9F/Latin small Delta)
∅ (EDh) φ (03C6 Greek small Phi) ∅ (2205/Empty set)
∈ (EEh) ε (03B5/Greek small Epsilon) ∈ (2208/Element of)

* inconsistent: looks like a Beta in some fonts (β/03B2) and like a Sharp S in others (ß/00DF). Both of
those have their own code points, so the new mapping simply preserves the original (whatever it looks like).

DISPLAY CONSIDERATIONS
──────────────────────

Size Matters

Outlined TrueType fonts are by definition scalable, so in theory they can be used at any size. But
to reproduce oldschool raster characters, the outlines follow the contours of the original pixel
glyphs, so the rendering will be optimal only if the outline snaps to the pixel grid of your target
display; otherwise you *will* get fugly scaling artifacts. To make a long story short, they'll only
look best at their native pixel sizes, or at integer multiples thereof.

With the bitmap ('Bm') fonts this is less tricky, since there are no outlines - they're always
rendered on grids of whole pixels, so the correct sizes are easy to find and the result should
always appear sharp. The mixed-format ('Mx') fonts also include embedded bitmaps, but these bitmaps
are only used when the native size is selected: other sizes will display as outlines.

It *should* be easy to determine this native pixel size, because it's clearly spelled out for each
font in the index. Problem is, most current GUI environments make it more difficult than it should
be – sizes may have scaling factors applied, may not be easily selectable, and are often not
measured in pixels at all.

This doesn't matter very much for displays with ultra-high DPI resolutions (say 200 or higher),
because they make scaling artifacts much less noticeable so you can often get away with arbitrary
sizes, but most current monitors aren't like that.

Does the outline fall on
pixel boundaries? Great.

An integer scaling
factor is also fine.

...Now THIS is just
asking for trouble.

Actual pixel grid

Pixels, Points, and DPI Resolutions

One obstacle is that most operating systems tend to measure text sizes in points (pt), a unit used
in print and typesetting, rather than pixels, the physical unit that display devices operate with.
This oddity is with us today largely for historical reasons: computer GUIs were becoming popular
right when Desktop Publishing was all the rage, and the assumption was that if you bothered with the
sizes of on-screen text at all, it was because you wanted a hard copy on dead trees.

That's where this particular unit came from, but there was a more general reason to separate type
sizes from the physical characteristics of the monitor: the concept of device independence mandates
that things should always have a consistent appearance, regardless of your output device. A swell
idea in theory, but in practice little attention was paid to mapping logical to physical units.
Monitor resolutions kept varying, but Windows settled on the assumption of 96 DPI (where 1pt =
0.75px), Mac OS chose 72 DPI (1pt = 1px), and others went their own ways.

Decades later, we still have to deal with GUI scaling that never actually matches the monitor's
physical resolution, with applications that may or may not be aware of DPI adjustments, with mobile
devices that make their own assumptions, and a whole bunch of fun problems like that. None of it
really helps with our use case (finding the optimal sizes for pixel-outline fonts), which is
naturally marginal and was never really considered.

The Bottom Line: Optimal Sizes

In a nutshell, you'll have to experiment, but a good guideline would go something like this:

• Find out how your OS converts points to pixels for your particular display settings. For most
fonts this should be enough, and you can simply select the size that corresponds to the original
bitmap font's height in pixels.

• For other fonts the desired size will differ a little bit. Sometimes an integer pixel size
results in a fractional point size - e.g. in Windows at 96 DPI, 19 pixels = 14.25 points; Windows
text rendering seems to work at 0.5pt increments, so you can't quite get there. Even when
Windows can *render* the right size (e.g. 14 pixels = 10.5 points), you can't always *select* it,
because the default font dialogs simply don't accept fractional numbers.

To get around these hassles, font metrics for certain sizes have been tweaked, so that the size
you want to select might differ from the naive pixel-to-point conversion.

• Basically: if the original charset's pixel height divides by 4, you're good – just select the
corresponding point/pixel size. If it doesn't, round up to the next multiple of 4, and treat the
font as if it were that size.

For example, if the original oldschool character size is 8x14, round the height up to 16 pixels,
and select the size that corresponds to that (at 96 DPI, that's 12 pt). For 8x19, round up to 20
pixels (=15 pt at 96 DPI). This holds true even when you're selecting the size in pixels rather
than points.

All of the above applies to .ttf fonts only. Bitmap fonts (.fon) naturally come with the right
pixel sizes built-in; web fonts (.woff) can always be sized flexibly using any supported CSS unit,
which includes pixels, so these metric adjustments weren't necessary.

Aspect ratio

As discussed somewhere above, modern displays have square pixels as a rule. However, the original
fonts were (mostly) used in various non-square pixel resolutions, so 1:1 pixel reproductions do not
preserve the aspect ratio: most of these fonts will be somewhat squashed vertically, compared to
their appearance on original hardware.

Version 2.0 includes aspect-corrected ('Ac') versions of the TrueType fonts, each according to its
original pixel aspect ratio (both the "square" and the "corrected" ratios are noted for each font in
the index). The outlines in these fonts similarly follow the pixel grids of the original
characters, but here they aren't square, so in general the rendering on a modern display won't be
100% crisp. With good sub-pixel anti-aliasing however (such as ClearType on Windows, *if* it's
tuned properly) the result can still be quite good.

Only the .ttf fonts have aspect-corrected versions, since:

• Aspect correction doesn't really work with .FON bitmap fonts. Technically the format *does*
support it, because it was created way back when pixels still weren't uniformly square, and
allows you to specify separate vertical and horizontal resolutions. The results are pretty
horrible however – the renderer seems to interpret this as a green light to distort the fonts out
of recognition if the desired aspect ratio doesn't precisely fit the physical pixel grid. So, no
go with bitmaps.

• The web fonts (.woff) really don't need separate aspect corrected versions, since you can always
do it yourself using CSS.

So how was the "correct" aspect ratio derived for each font? Knowing the original resolution ("SAR"
- 'storage aspect ratio'), and the intended aspect of the display area ("DAR" – 'display aspect

ratio'), you can derive the "PAR" (pixel aspect ratio): PAR = DAR/SAR. Whenever this ratio is too
unwieldy, I've chosen to round it to a close enough number which is easier to work with.

• Example: standard VGA text mode runs at 720x400 on a 4:3 monitor, so the pixel aspect ratio is
(4:3)/(720:400) = 20:27 = 0.740740...; for practical reasons I've rounded this to 3:4 = 0.75.

Certain fonts *were* originally used in square-pixel resolutions, and for others the pixel aspect
was close enough to square that the difference is barely noticeable. For these fonts aspect-
corrected versions aren't included.

• Example: 40-column text mode on the Philips :YES runs at 320x256 on 4:3 monitors, so the pixel
aspect ratio is (4:3)/(320:256) = 16:15 = 1.0666...; close enough to 1, so it's treated as
square.

Some of the original fonts were seen in more than one display mode, so the resolutions and pixel
ratios could vary. To avoid going completely overboard, in these cases I simply selected the most
common pixel aspect as the "correct" one.

(Incidentally: a pixel aspect ratio like "3:4" means you can still get an ideal display on a square-
pixel monitor, if you render the text at 4x its original pixel height: the rectangular blocks
enclosed by the outline will always be 3 pixels wide by 4 tall, so you shouldn't get unseemly pixel-
fraction artifacts. Of course, for most normal usage this isn't very practical.)

Anti-Aliasing

Current operating systems usually apply some sort of anti-aliasing ("smoothing") to scalable text.
With a proper algorithm (hinted sub-pixel AA, not grayscale) and when configured correctly, this
does improve legibility; I wouldn't really recommend disabling it completely, although if that works
for you then by all means go ahead and turn it off. In the specific case of TrueType fonts based on
pixel outlines, however, it mostly hinders rather than helps. In some cases you may get a sort of
smearing/fringing effect on the TrueType fonts, even if you pick the right size to perfectly align
them with your monitor's pixel grid.

In recent Windows versions this happens even with ClearType, which usually produces sharper
rendering than other algorithms. For a nice crisp appearance, you should stick to the font's
"native" pixel size and use either the 'Bm' (bitmap) or 'Mx' (mixed-format) variants, whichever
plays nicer with your application.

In most Linux distros you should be able to use fontconfig[→] to control the anti-aliasing of text,
and the advantage here is that it can be enabled or disabled on a per-font basis: you can keep your
smoothed-out text, and turn off AA only for pixel-based fonts (like the ones in this collection).
If your application or rendering engine isn't handling the 'Mx' fonts properly, this sort of fine-
tuning can compensate for that.

There's also the newer .otb format that provides bitmap-only 'Bm' versions for Linux, but only
preliminary testing has been done so far so I can't be sure how well that works. If it does, great.

On the Mac, at least on macOS >=10.14, AA is grayscale-only and you cannot turn it off globally.
Embedded-bitmap rendering doesn't seem to be supported, so the 'Mx' fonts won't help out there. As
icing on the cake, "font smoothing" (enabled by default!) doesn't do what it says on the tin: it
simply makes all fonts artificially bolder[→], which is generally a bad idea, and even more so with
fonts like these.

Specific Mac applications (e.g. iTerm2, MacVim) *can* be configured to disable anti-aliasing, so
that's your best bet wherever it is supported – as long as you're using the 'Px' fonts, it'll look
just fine. For all other cases, just ensure that "font smoothing" is off. In any event, the
aforementioned advice about native/optimal font sizes still holds true. (Thanks to kerframil for
these findings.)

MISCELLANEOUS USAGE NOTES
─────────────────────────

Windows Console / Command Prompt / Terminal

At least in Windows 7 and earlier, only bitmap (raster) fonts can be freely selected for use in the
Windows console. TrueType fonts require a registry edit – to add them to the list, you'll have to
start regedit.exe and open this key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Console\TrueTypeFont

You'll probably see two fonts defined (Lucida Console and Consolas), as "0" and "00" respectively.
To enable more TrueType fonts, add a new String Value with one more 0 in its name (the first one you
add will be 000, then 0000 and so on). In the Value field simply enter the font's name, e.g. MxPlus
IBM VGA 9x16. Hit OK and exit the editor. The font will now be available in the Properties dialog
for console windows.

https://www.fontconfig.org/
https://tonsky.me/blog/monitors/#turn-off-font-smoothing
https://tonsky.me/blog/monitors/#turn-off-font-smoothing

In Windows 10 this no longer seems to be the case. Monospaced TrueType fonts *are* selectable for
console windows; in fact, as of this writing, "v2" of the Console Host (activated with the 'ForceV2'
registry setting[→]) does not support bitmap (raster) fonts at all.

There is also the newer Windows Terminal[→]; I haven't tested it too extensively, but Microsoft's
own docs showcase a font from this pack[→], so apparently it'll work just fine. :) The JSON
settings to specify the font face and size can be seen in the linked page.

Web usage

For embedding these fonts in web pages, the .woff format is recommended. You simply need to define
a CSS @font-face rule as follows, and then specify the defined 'font-family' as usual:

@font-face {
 font-family: 'IBM VGA 8x16';
 src: url(WebPlus_IBM_VGA_8x16.woff) format('woff');
 font-weight: normal;
 font-style: normal;
}

'Web437' fonts only include the 256 characters present in DOS code page 437; if your web document
contains characters outside this range, they will usually be displayed using a fallback font. To
control this, you can specify a second @font-face rule for one of the 'Plus' fonts – preferably one
with the same size as your main font – and then set it as your fallback font like so:

.vga8 {
 font-family: 'Verite 8x16', 'IBM VGA 8x16', monospace;
 font-size: 16px;
 line-height: 16px;
}

In this example 'Verite 8x16' contains only the CP437 characters. Non-CP437 characters like the
Euro symbol '€' will be taken from the 'IBM VGA 8x16' font, since it's specified as the second
priority, and contains '€' as part of the 'Plus' charset. If the character doesn't exist in the
'Plus' font either, the browser will move on to the third priority specified (your default
monospaced font).

The webfonts implement only the square-pixel variants - if you want aspect correction, you can
simply use a CSS transform. As a general rule, you should always do your scaling on the horizontal
axis, to take advantage of subpixel anti-aliasing where available. For instance, 'IBM MDA' has a
2:3 pixel aspect, so you'd want to do it like this:

.mda-scaled {
 font-family: 'IBM MDA', monospace;
 font-size: 14px;
 line-height: 14px;
 transform: scaleX(0.6667);
}

As for sizes and line heights, for best results you should always use the same pixel height as the
original typeface (or an integer multiple). It's still a good idea to keep in mind that in CSS, a
pixel is not a pixel[→]; but that distinction applies mainly to high-DPI screens and devices – where
it doesn't matter very much if you stray from the optimal font size, since scaling artifacts are
much less apparent. On most monitors with a normal resolution, where size does matter, a CSS pixel
generally *is* a physical pixel.

Working with CP437/DOS Text Files

Text-based material which originates with DOS can be difficult to handle properly in a current OS,
especially if it uses non-ASCII/graphical characters. This is usually the case with .NFO/ASCII/ANSI
artwork[→], for instance. To display and edit it correctly, two things have to happen:

• Your viewer/editor needs to support the encoding (code page 437).
• The font you're using should have the ability to display it.

On Windows the 'Px437', 'Ac437' and 'Bm437' fonts in this pack fulfill the latter condition; they're
recognized as supporting the "DOS/OEM" charset. The 'Mx' (mixed outline/bitmap) fonts also include
'Mx437' versions, but disappointingly enough, the same trick[→] which forces Windows to display them
properly also prevents it from recognizing them as DOS/OEM fonts. Unless and until Microsoft
chooses to support embedded bitmaps without requiring this sort of insanity, they can't be used for
CP437 text.

If your software doesn't support the CP437 encoding, or doesn't know how to map it to something like
UTF-8, you can use a converter: a nice one can be found at CodeLobe[→].

On the web things are even more problematic, since most browsers don't support CP437[→]. In fact
WHATWG's encoding standard decrees that user agents *must* not[→] support it, as it's missing from

https://devblogs.microsoft.com/commandline/understanding-windows-console-host-settings/
https://devblogs.microsoft.com/commandline/understanding-windows-console-host-settings/
https://aka.ms/terminal
https://docs.microsoft.com/en-us/windows/terminal/custom-terminal-gallery/retro-command-prompt
http://www.gregoryschmidt.ca/writing/when-is-a-pixel-not-a-pixel-pixels-points-dps
http://www.gregoryschmidt.ca/writing/when-is-a-pixel-not-a-pixel-pixels-points-dps
https://breakintochat.com/wiki/ANSI_art
https://int10h.org/blog/2016/01/windows-cleartype-truetype-fonts-embedded-bitmaps/
http://codelobe.com/tools/cp437-converter
https://bugzilla.mozilla.org/show_bug.cgi?id=1387382#c2
https://encoding.spec.whatwg.org/#names-and-labels

their list of kosher encodings. A particularly silly decision when other DOS charsets – even less
common ones! – coexist happily enough in the approved list.

Luckily, solutions exist: I can recommend the RetroTxt browser extension[→], which not only converts
CP437 text to UTF-8 for display, but comes with a big bunch of tweakable options (and includes a few
of these oldschool PC fonts built-in).

Older Windows versions (95/98/ME/NT4)

As far as I know, .ttf fonts from this package won't work in Windows versions earlier than Windows
2000. The reason is that they actually use OpenType tables (like most TrueType outline fonts in the
wild these days), and OpenType wasn't supported out of the box before Windows 2000.

If your retro system is running one of these Windows versions, it's *possible* that ATM Light[→]
from Adobe will make these .ttf fonts usable, but I haven't tested this myself.

DIFFS & ERRATA
──────────────

This section lists instances where the versions in the Font Pack differ from the original raw bitmap
designs. This doesn't cover custom additions, like in the remapped and 'Plus' versions, which are noted
separately. Items here represent only errors and obvious visual issues with the original glyphs, which
I've tried to spot and correct, in the interest of usability.

• Acer VGA *x8: fixed misaligned box drawing character (#190/0xBE)
• DG One Alt (and -2y): fixed misaligned box drawing character (#208/0xD0)
• DOS/V re. PRC16/19: fixed erratic baseline for 'p', 'q' and several characters in the #128-#165

block
• Master 512*: changed character #90/0x60 from a duplicate of '£' (#156/0xA3) to a backquote (`) as

standard
• NEC MultiSpeed (and -2x): fixed misaligned box drawing character (#189/#0xBD)
• Paradise132 7x9: fixed misaligned characters 'g','p','q'
• SeequaCm (and -2y): fixed surplus floating pixel over block character (#220/0xDC)
• Tandy2K (and -2x): fixed misaligned box drawing character (#208/0xD0)
• Trident 8x11: fixed inconsistent baseline (characters #128-#172)

VERSION HISTORY
───────────────

v2.2 (2020-11-21)

• 20 new fonts added:
o PC-compatible computers: NEC MultiSpeed (4 fonts), Schneider EuroPC (3 fonts), Tandy 1000

Video I -2x (1 font), Tandy 1000 Video II -2x (1 font)
o PC semi-compatibles: DEC Rainbow 100 (4 fonts), HP 150 Touchscreen (1 font), Robotron A7100 (1

font), Tandy 2000 graphics modes (3 fonts), Zenith Z-100 (2 fonts)

• Fixes/changes: in all 'Plus' fonts, the characters ď, ť, ľ, Ľ now consistently use the modified
form of the háček/caron diacritic (as used in Czech/Slovak)

v2.1 (2020-10-30)

• 72 new fonts added:
o PC-compatible computers: Acer 710 Mono (1 font), HP 100LX (6 fonts), Olivetti MS-DOS (4

fonts), Sanyo MBC-55x (2 fonts), Sanyo MBC-775 (2 fonts), Sharp PC-3000 (4 fonts), TeleVideo
Tele-PC (2 fonts)

o PC video hardware: CL Eagle II (2 fonts), CL Eagle III (2 fonts), CL Stingray (4 fonts),
InteGraphics VGA (2 fonts), Phoenix VGA (6 fonts), Sigma Designs RealMagic (6 fonts), STB
AutoEGA (2 fonts), Early Trident/TVGA8800CS (7 fonts), Tseng EVA-480 ET2000 (2 fonts),
Various/ACM VGA (6 fonts)

o PC semi-compatibles: Acorn BBC Master 512 (6 fonts), Atari Portfolio (1 font), Philips :YES G-
2x (1 font), Texas Instruments PC/PPC (1 font), Wang Professional Computer (3 fonts)

• New extended charsets ('Plus' versions) for existing fonts: Cordata PPC-21, ToshibaSat 8x8,
ToshibaSat 9x8

• Format updates:
o 'Web' (.woff webfonts) now have separate '437'/'Plus' variants, like the rest ('Plus' remaps

some of the Greek/Math glyphs in CP437, so it's not exactly a superset of the latter)
o 'Bm' (bitmap) fonts are now available for Linux too, in the .otb format – both '437'/'Plus'

charsets. See the format notes about these.

https://retrotxt.com/
https://www.adobe.com/products/atmlight.html

• Removed fonts:
o Olivetti MxVGA: superseded by CL Stingray (the VGA chipset/firmware used in these laptops)
o DG One Alt, -2y: merged with DG One, -2y as Bold variants of these font families

• Fixed a few minor errors in the following fonts:

o Cordata PPC-400 'Plus' variants (characters 'ē', 'Ų', 'ų')
o ToshibaSat 8x14 and 9x14 'Plus' variants (character 'Є')
o PhoenixEGA* (character '☺')

v2.0 (2020-07-12)

• 131 new font families added, from 52 different sources (hardware/firmware/software)
• 3 new font variants:

o 'Mx' – Mixed-Format: TrueType versions with embedded bitmaps (for sharper rendering)
o 'Ac' - Aspect-Correct TrueType versions
o 'Web' - .woff web fonts

• These fonts have been renamed, to keep things more consistent and less confusing ("*" = wildcard):

o AmstradPC1512* renamed Amstrad PC* (other Amstrad PC models use the same font)
o IBM EGA8/EGA9/VGA8/VGA9 now specify the full size (IBM EGA 8x14 etc.), as more 8/9-dot sizes

have been added
o IBM PS/2thin* renamed IBM Model3x Alt* (not all PS/2 models have it)
o IBM ISO* renamed IBM DOS ISO*
o Kaypro2K* renamed Kaypro2K G* (as it's specific to graphics modes)
o TandyOld* renamed Tandy1K-I (there's 'Tandy2K' as well now, and the video chipset in the early

1000 series was officially named 'Tandy Video I')
o TandyNew* renamed Tandy1K-II (likewise)
o For all Tandy1K fonts, TV* also becomes 200L*, and 225* becomes 225L*
o VGA SquarePx renamed AST Premium Exec (other square-pixel VGA fonts have been added, and the

name should indicate the origin)

• These fonts have been removed, or rather replaced with better/fuller versions:
o AMI BIOS* fonts are superseded by AMI EGA 8x8
o ITT BIOS* fonts are superseded by ITT Xtra*
o ToshibaLCD 8x8 is superseded by ToshibaTxL1 8x8
o ToshibaLCD 8x16 is superseded by ToshibaTxL2 8x16

• Bugfix: corrected all font styles to "Regular" across the board
• Adjusted the Ascent metric for certain fonts taller than 16 pixels, to make size selection more

consistent

If you're upgrading from v1.x: Due to the above changes, I strongly recommend uninstalling all older
"Bm" and "Px" fonts before you install any from v2.0. Otherwise you'll end up with duplicates and
an inconsistent set.

v1.01 (2020-04-22)

• Bugfix release: fixed single-character errors in the fonts 'ITT BIOS'/'-2y' (Px437/Bm437), 'IBM
BIOS'/'-2x'/'-2y' (PxPlus), and 'IBM CGA'/'-2y' (PxPlus)

v1.0 (2016-01-06)

• Initial release

CREDITS & ACKNOWLEDGEMENTS
──────────────────────────

Font adaptations, documentation, website: VileR

Thanks to:

• John Elliot[→], MinusZeroDegrees[→], ripsaw8080, Ardent Tool of Capitalism[→], Great
Hierophant[→], NewRisingSun - for helpful information

• alecv, alexanrs, Robbert van der Bijl, Rich Cini[→], John Elliot[→], fs5500, Yossi Gil, Bill
Hart, James Howard, jesolo, Jo22, keropi, MCbx[→], Olivrea[→], per, Thomas Schneider, SomeGuy,
Svenska, Trixter[→], T-Squared[→], Foone Turing, VGA Museum[→] - for providing/verifying sources
and ROM dumps for several charsets, off real hardware and localized video cards

http://seasip.info/
http://minuszerodegrees.net/
https://www.ardent-tool.com/
http://nerdlypleasures.blogspot.com/
http://nerdlypleasures.blogspot.com/
http://www.classiccmp.org/cini/
http://seasip.info/
https://oldcomputer.info/
https://olivrea.de/
http://oldskool.org/
https://www.tsqproductions.com/
http://www.vgamuseum.info/

• Rebecca G. Bettencourt/Kreative Korp[→] - for responding to my inquiries with a surprise open-
source release of the awesome Bits'n'Picas vectorizer

• Felix Rosén, erkcan, kerframil - for testing and bug reports

Tools used:

• ROM charset extraction: Binxelview[→] by Brad Smith, Crystal Tile 2[→] by angel-team
• Bitmap font editing: Fony 1.4.7[→] by hukka
• Bitmap-to-outline vectorization: Bits'n'Picas[→] by Kreative Korp
• TrueType font editing, fine-tuning, re-encoding etc.: FontForge[→] by George Williams and the

FontForge Project
• Windows .TTF testing/viewing: SIL ViewGlyph v1.81.0[→] by Bob Hallissy/SIL International
• DOS screen font manipulation and dumping: fntcol16[→] by Yossi Gil, Fontraption[→] by yours truly
• DOS .CPI file manipulation:- CPIED 1.3c[→] by Balthasar Szczepański

CONTACT
───────

I can be reached at: email - viler/ΑΤ/int10h/DΟТ/org
 www - http://int10h.org[→]
 blog - https://int10h.org/blog[→]

If you have an interesting machine or video card, which fits the scope of this project, and it has a
non-generic text mode font (i.e. it doesn't just duplicate the IBM charsets), please contact me -
contributions to this collection are always appreciated.

LEGAL STUFF
───────────

I do not claim any rights to the original raster binary data charsets, which this work is based on.
Credit for these goes to their respective designers.

The font files in this pack (TTF and FON remakes and enhancements) are my own work, hereby licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License[→].

"tl;dr" version (which is not a substitute for the license):

• You may freely share and adapt / transform / enhance them for any purpose
• You must give appropriate credit (which includes the author's name and a link to the original

material)
• If you distribute your own adaptations, do so under a compatible license
• No warranties are given - whatever you do, I will not be held liable

Enjoy!

In addition, there are a couple of points that should be made quite clear. Out of all the comments I've
received about this collection, a small minority of people have assumed a priori that its legal status
is dubious at best, that the original binary charsets are protected by copyrights (which are being
infringed), and/or that I act in bad faith by taking credit for my work on it.

It should be noted that I've done quite a bit of research into this issue, and everything I've turned up
supports the conclusion that there's nothing illegal about this work. US law (which happens to have
this site under its jurisdiction) does not consider typefaces to be copyrightable material, and making
derivative versions does not infringe on anyone's intellectual property. If I was re-distributing the
original programs which render these fonts onto a computer screen - such as firmware/driver code, or
TrueType files that were the *original distribution format* - that would've been a different story.
However, all fonts here were originally simple bitmap data; I am providing new software to reproduce
these old glyphs in different (and sometimes expanded) formats.

There's enough material online to consult on this subject if you wish (the comp.fonts FAQ[→] is a good
starting point). It's probably safe to consider the lack of past precedents, too. The most commonly-
seen of these fonts are the ones from IBM, which have been duplicated bit-for-bit by countless
manufacturers in their own hardware - from Hercules to nVidia - and sold with this hardware practically
everywhere on the planet. I couldn't find information about a single lawsuit resulting from that (as
opposed to, say, companies that infringed on IBM's BIOS code). By itself, lack of precedent is not a

http://www.kreativekorp.com/
https://github.com/bbbradsmith/binxelview
http://www.romhacking.net/utilities/818/
http://hukka.ncn.fi/?fony
https://github.com/kreativekorp/bitsnpicas
http://fontforge.github.io/
http://scripts.sil.org/ViewGlyph_home
http://ftp.lanet.lv/ftp/mirror/x2ftp/msdos/programming/misc/fntcol16.zip
https://int10h.org/blog/2019/05/fontraption-vga-text-mode-font-editor/
https://www.ibiblio.org/pub/micro/pc-stuff/freedos/files/distributions/1.2/repos/pkg-html/cpied.html
http://int10h.org/
https://int10h.org/blog
http://creativecommons.org/licenses/by-sa/4.0/
http://www.faqs.org/faqs/fonts-faq/part2/

sufficient argument, but it does support the one already made - and precedents for NON-infringement
certainly exist (e.g. Eltra Corp. v. Ringer).

As for bad-faith arguments ("you just ripped a bunch of fonts and repackaged them!"), rest assured that
there's more to it than that. Creating this collection has involved a lot of hard research, conversion
and optimization work to ensure that the originals are represented both faithfully and usefully,
something that is far from trivial; there are also my own additions in the 'Plus' versions and the
remapped charsets. This work surely merits *some* credit, and that is the only credit I claim.

- VileR

	About
	Frequently Asked Questions
	Q. What's with all those weird prefixed versions of each font? Which one(s) do I want/need?
	Q. Okay, and the suffixes - "-2x", "-2y"? What are these all about?
	Q. If a font already has an expanded 'Plus' charset, isn't the '437' version redundant? Why include it at all?
	Q. The TrueType fonts don't look good on my end (badly aliased, too bold, distorted, etc.) - what's the deal?
	Q. Will you add [insert font name]?
	Q. Will you add bold / italics / programming ligatures / etc.?
	Q. How about raw binary versions of these fonts? For use in real VGA text mode, homebrew hardware projects, etc.?
	Q. Is every single font here 100% faithful to the original raster typeface?
	Q. Is this even legal? The original fonts are not yours. Do you have the right to distribute these versions?

	Font Formats/Variants
	'Px' (pixel outline) TrueType fonts
	'Mx' (mixed format) TrueType fonts: outlines + bitmaps
	'Ac' (aspect-correct) TrueType fonts
	'Bm' (bitmap) fonts, .fon and .otf formats
	'Web' (webfonts, .woff format)
	Summary / tl;dr version

	Encodings and Character Sets
	The '437' Character Set
	The 'Plus' Character Set

	Display Considerations
	Size Matters
	Pixels, Points, and DPI Resolutions
	The Bottom Line: Optimal Sizes
	Aspect ratio
	Anti-Aliasing

	Miscellaneous Usage Notes
	Windows Console / Command Prompt / Terminal
	Web usage
	Working with CP437/DOS Text Files
	Older Windows versions (95/98/ME/NT4)

	Diffs & Errata
	Version History
	Credits & Acknowledgements
	Thanks to
	Tools used

	Contact
	Legal Stuff

