econ-demo/econ-demo.py

420 lines
11 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import tabulate
# it = 0
def compounding_interest(balances, rate=0.05, terms=3):
if terms <= 0:
print("Number of terms must be >0!")
return
global it
balances_over_time = []
current_balances = balances
for i in range(0, terms):
new_bal = []
for balance in current_balances:
b = balance + (balance * rate)
new_bal.append(b)
# it += 1
assert(len(new_bal) == len(balances))
balances_over_time.append(new_bal)
current_balances = new_bal
return balances_over_time
def calc_share_of_wealth(balances):
total_money = sum(balances)
shares = []
for balance in balances:
shares.append(balance/total_money)
return shares
def ubi(balances, rate=10, terms=3):
dividend = rate
balances_over_time = []
current_balances = balances
for i in range(0, terms):
new_bal = []
for balance in current_balances:
b = balance + dividend
new_bal.append(b)
assert(len(new_bal) == len(balances))
balances_over_time.append(new_bal)
current_balances = new_bal
return balances_over_time
def mining(balances, halving_frequency=1, reward=10, terms=3):
balances_over_time = []
current_balances = balances
for i in range(0, terms):
new_bal = []
for balance in current_balances:
b = balance + reward
new_bal.append(b)
assert(len(new_bal) == len(balances))
if i % halving_frequency == 0:
reward = reward/2
balances_over_time.append(new_bal)
current_balances = new_bal
return balances_over_time
def get_balances_over_time(names, balances, data):
if len(names) != len(balances):
print("Every person needs a balance.")
return
df = pd.DataFrame({
'name' : names,
'initial' : balances
})
for i in range(0, len(data)):
key = str(i+1)
df[key] = data[i]
return df
# -------------
def illustrate_share_of_wealth():
participants = ["Alice", "Bob", "Charlie"]
balances = [100,40,20]
print("In this demo, we have three participants.\n", participants)
print("They respectively have ", balances)
print("\nThe initial distribution of wealth is ")
print(calc_share_of_wealth(balances))
print("\n")
df = get_balances_over_time (
participants, balances, compounding_interest(balances)
)
# print(it)
df["share"] = [val * 100 for val in calc_share_of_wealth(df["3"]) ]
print(df.to_html())
terms = 222
print(f"How much money exists after {terms} terms?")
#### In 222 terms, even C becomes a millionaire.
nb = compounding_interest(balances, terms=terms)
print(nb[-1])
print("\n")
df = get_balances_over_time (
participants, balances, ubi(balances)
)
print(df.to_html())
print("How much money exists after 999 terms?")
u = ubi(balances, terms=999)
print(u[-1])
print("What is the share of wealth in a UBI economy?")
print(calc_share_of_wealth(u[-1]))
def visualize_ubi(terms=25):
participants = ["Alice", "Bob", "Charlie"]
balances = [100,40,20]
df = get_balances_over_time (
participants, balances, ubi(balances, terms=terms)
)
# print(df.keys)
shares = []
for key, data in df.items():
if key == "name":
continue
if key == "initial":
continue
shares.append(calc_share_of_wealth(data))
sow = pd.DataFrame(shares)
x = [i for i in range(0,terms)]
try:
assert(len(x) == len(shares))
except AssertionError:
print(len(x), len(shares))
exit()
plt.style.use('dark_background')
plt.plot(
x, sow[0], color="red", label=participants[0]
)
plt.plot(
x, sow[1], color="lightgreen", label=participants[1]
)
plt.plot(
x, sow[2], color="cyan", label=participants[2]
)
plt.axhline(
y=0.33, color='violet', linestyle='--', label="0.33"
)
plt.title("Change in Wealth Distribution With a Constant Dividend")
plt.legend()
plt.xlabel("Terms")
plt.ylabel("Share of Wealth")
plt.savefig("ubi-wealth-distribution.png")
plt.close()
# plt.show()
return
def calc_total_supply(df):
total = []
for key, data in df.items():
if key == "name":
continue
total.append(sum(data))
return total
def draw_apy_inflation(terms=50, linear_label="? (linear)"):
participants = ["Alice", "Bob", "Charlie"]
balances = [100,40,20]
df = get_balances_over_time (
participants, balances, ubi(balances, terms=terms)
)
total_supply_ubi = calc_total_supply(df)
df_si = get_balances_over_time (
participants, balances,
compounding_interest(balances, terms=terms)
)
total_supply_si = calc_total_supply(df_si)
# + 1 because the initial frame is included this time
x = [i for i in range(0,terms+1)]
try:
assert(len(x) == len(total_supply_si))
except AssertionError:
print(len(x), len(total_supply_si))
print(df_si)
exit()
plt.style.use('dark_background')
plt.plot(
x, total_supply_ubi, color="cyan", label="dividend = 10"
)
plt.plot(
x, total_supply_si, color="red", label="apy = 0.05"
)
plt.plot(
x,
calc_total_supply(get_balances_over_time(
participants,
balances,
compounding_interest(balances, terms=terms, rate=0.04)
)),
color="orange", label="apy = 0.04"
)
plt.plot(
x,
calc_total_supply(get_balances_over_time(
participants,
balances,
compounding_interest(balances, terms=terms, rate=0.03)
)),
color="yellow", label="apy = 0.03"
)
plt.title("Supply of Money Over Time")
plt.legend()
plt.xlabel("Terms")
plt.ylabel("Total Currency")
plt.savefig("inflation-ubi-vs-5apy.png")
plt.close()
# plt.show()
def draw_3ubi_3apy(terms=50):
participants = ["Alice", "Bob", "Charlie"]
balances = [100,40,20]
df = get_balances_over_time (
participants, balances, ubi(balances, terms=terms)
)
total_supply_ubi = calc_total_supply(df)
df_si = get_balances_over_time (
participants, balances,
compounding_interest(balances, terms=terms)
)
total_supply_si = calc_total_supply(df_si)
# + 1 because the initial frame is included this time
x = [i for i in range(0,terms+1)]
assert(len(x) == len(total_supply_si))
plt.style.use('dark_background')
plt.plot(
x, total_supply_ubi, color="cyan", label="dividend = 10"
)
plt.plot(
x,
calc_total_supply(get_balances_over_time(
participants,
balances,
ubi(balances, rate=5, terms=terms)
)),
color="violet", label="dividend = 5"
)
plt.plot(
x,
calc_total_supply(get_balances_over_time(
participants,
balances,
ubi(balances, rate=15, terms=terms)
)),
color="lightgreen", label="dividend = 15"
)
plt.plot(
x, total_supply_si, color="red", label="apy = 0.05"
)
plt.plot(
x,
calc_total_supply(get_balances_over_time(
participants,
balances,
compounding_interest(balances, rate=0.04, terms=terms)
)),
color="orange", label="apy = 0.04"
)
plt.plot(
x,
calc_total_supply(get_balances_over_time(
participants,
balances,
compounding_interest(balances, rate=0.03, terms=terms),
)),
color="yellow", label="apy = 0.03"
)
plt.title("Supply of Money Over Time")
plt.legend()
plt.xlabel("Terms")
plt.ylabel("Total Currency")
plt.savefig("inflation-ubi-vs-apy2.png")
plt.close()
# plt.show()
def visualize_inflation(df, title="Inflation", filename="inflation.png"):
supply_over_time = calc_total_supply(df)
time_span = len(supply_over_time)
x = [i for i in range(time_span)]
assert(len(x) == time_span)
plt.style.use('dark_background')
plt.plot(
x, supply_over_time, color="red")
plt.title(title)
plt.xlabel("Terms")
plt.ylabel("Total Currency")
plt.savefig(filename)
plt.close()
def visualize_wealth_dist(df, title="Wealth Distribution", filename="wealth-distribution.png"):
participants = df["name"]
shares = []
for key, data in df.items():
if key == "name":
continue
if key == "initial":
continue
shares.append(calc_share_of_wealth(data))
sow = pd.DataFrame(shares)
# print(sow.keys())
terms = sow.shape[0] + 1
x = [i for i in range(1,terms)]
print(len(x))
print(len(shares))
assert(len(x) == len(shares))
plt.style.use('dark_background')
plt.plot(
x, sow[0], color="red", label=participants[0]
)
plt.plot(
x, sow[1], color="lightgreen", label=participants[1]
)
plt.plot(
x, sow[2], color="cyan", label=participants[2]
)
plt.axhline(
y=0.33, color='violet', linestyle='--', label="0.33"
)
plt.title(title)
plt.legend()
plt.xlabel("Terms")
plt.ylabel("Share of Wealth")
plt.savefig(filename)
plt.close()
def draw_simple_mining_demo():
participants = ["Alice", "Bob", "Charlie"]
balances = [100,40,20]
m = get_balances_over_time(
participants, balances,
mining(balances, halving_frequency=1, terms=10)
)
print(m)
print(m.shape[1])
visualize_inflation(m, title="Inflation Given block_reward = 10 and Halving Every Term", filename="inflation-pow.png")
# print(m.iloc[:,:5].to_markdown())
visualize_wealth_dist(m, filename="wealth-distribution-pow.png")
class Sim:
def __init__(self, players, balances, terms=50):
self.players = players
self.balances = balances
self.terms = terms
self.events = []
pass
def add_player(self, name="Danny", balance=50):
self.players.append(name)
self.balances.apend(balance)
assert(len(self.players) == len(self.balances))
def run(self, update, trade = None):
i = 0
ADD_NEW_PPL_EVERY = 3
current_balances = self.balance
result = list()
while i <= self.terms:
# add new player?
if ADD_NEW_PPL_EVERY > 0 and i % ADD_NEW_PPL_EVERY == 0:
pass
new_bal = []
# make players trade if an
if trade:
current_balances = trade(current_balances)
for balance in current_balances:
b = update(balance)
new_bal.append(b)
result.append(new_bal)
current_balances = new_bal
return result
def visualize(self):
pass
def mini_apy(balance, rate=0.05):
return balance + (balance * rate)
def mini_ubi(balance, dividend = 10):
return balance + dividend
if __name__ == "__main__":
illustrate_share_of_wealth()
visualize_ubi(terms=50)
draw_apy_inflation(terms=75)
draw_apy_inflation(terms=75, linear_label="dividend = 10")
draw_3ubi_3apy(terms=75)
draw_simple_mining_demo()
participants = ["Alice", "Bob", "Charlie"]
balances = [100,40,20]
s = Sim(participants, balances)